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Abstract

The use of electric scooters is being advocated by the government of Taiwan. An accurate indication of the state-of-charge (SoC) of the
battery (lead–acid) is essential to let the driver of the electric scooter know exactly the residual amount what amount of usable capacity. This
will result in greater confidence in using the electric scooter, and prevents the driver from becoming stranded with an inoperative machine.
The basic idea of this study is to derive a mathematical model that describes the battery voltage as a function of discharge current and depth-
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f-discharge (DOD). The parameters of this model are identified in real time. Then, the SoC is estimated by means of the Newto
N–R) method. The proposed algorithm enables the estimated SoC to be adjusted for changes in the behaviour of the battery. The
f the proposed method is verified using field-test data obtained from driving an electric scooter on various routes. The results sh
dopted method improves the accuracy in estimating the battery of SoC.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Just as it is important to know the amount of fuel remaining
n an automobile, the state-of-charge (SoC) of the battery is
ssential information in electric scooter operation. If the SoC
an be estimated accurately, the user will know exactly the
mount of power that the battery is capable of providing. This
aturally results in a greater confidence in the power source,
nd will allow proper handling of the electric scooter.

During discharge, the energy capability of a battery de-
ends on a number of parameters that include discharge cur-
ent, temperature, battery age, cut-off voltage, and service
istory (previous charge and discharge)[1]. The SoC of a
attery is a complex non-linear function of these parameters.

n practice, direct measurement of some of these parameters
s either impossible or financially prohibitive.

Traditionally, there are several practical methods available
o monitor lead–acid batteries and translate the resulting
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information into a prediction of performance capability. T
specific gravity method, the open-circuit voltage method,
the coulometric measurement method are some exam
Specific gravity is a direct indication of the SoC, becau
shows the concentration of acid in the electrolyte (note,
is consumed during the discharge of a lead–acid bat
It is impossible, however, to measure specific gravity c
tinuously under driving conditions. Furthermore, the us
gelled electrolytes and hermetically sealed batteries pre
the application of density measurements for evaluating
SoC. The open-circuit voltage of a lead–acid battery
function of the concentration of acid at the plates. The f
stabilized open-circuit voltage is an accurate indicator o
SoC with little dependency on the temperature or the
history of a battery, but to reach a stable open-circuit vol
the battery must be at rest for several hours with no l
Therefore, it is not a realistic option for an electric scoo
The coulometric method measures the amount of am
hours taken out of a battery to determine the SoC. Corre
factors are required for different discharge rates and am
temperatures[2]. This technique does provide a relativ
378-7753/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2005.01.018
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accurate short-term indication of the SoC, but accumulation
of error over a longer period makes it impractical to be used by
itself.

Although all of these methods have provided some degree
of success in areas of limited scope, batteries are complex
and dynamic electrochemical systems with performances that
are dependent on a combination of all of these parameters.
Measurement of a single performance variable provides an
incomplete picture of the state of the battery, and therefore,
a limited degree of accuracy.

Recently, a model-based technique has been proposed as
an alternative for determining battery SoC. Various models
have been developed based on the characteristic of discharge
voltage versus time (or discharge voltage versus SoC). Curve-
fitting models are used to match the discharge voltage versus
time or discharge voltage versus SoC curve with either a poly-
nomial[3], an exponential[4] or a parabolic[5] curve. Some
models employ more complicated hybrid approaches[6,7].
The major disadvantage of these models is that a parameter
set is required for each combination of discharge conditions
and battery type. These parametric sets are obtained through
an exhaustive series of discharge tests. Also, a drastic change
in battery behaviour may take place due to ageing, thermal
stress, or some other operating reasons. For more accurate
SoC estimation, changes in battery behaviour should be taken
into account whenever a discharge occurs. These approaches
s
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Fig. 1. Principle of the adaptive battery state-of-charge estimation.

discharge conditions has been employed to estimate battery
SoC. This representation is not robust, because it is sensitive
to changes in the discharge conditions. A more robust model
can be obtained by representing the discharge in the SoC
domain instead of the discharge time[8]. Because the SoC
is unknown during battery discharge, these models should be
determined via an exhaustive series of discharge tests. This
enables the model to be adaptive to different batteries and
ageing effects are avoided. The following model represents
the discharge in an equivalent DoD domain:

û(i(t), s) = f (i(t), s) = ĉ1 + ĉ2f1(s) + ĉ3i(t) + ĉ4i(t)f2(s),

= xTθ̂, (1)

wherex= [1, f1, (s), i, i·f2(s)]T represents the system’s model
and θ̂ = [ĉ1, ĉ2, ĉ3, ĉ4]T is the parametric vector to be esti-
mated. The variable ˆu(i, s) in Eq.(1) is the estimated battery
voltage,i(t) the measured discharging current of the battery,
ands is the DoD which is obtainable through the discharge
cycle and is calculated by dividing the coulometric measure-
ment by the total charge (AHcharged) supplied to the battery
during the recharge cycle, i.e.,

s =
∫ t

0 i dτ

AHcharged
(2)
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The present study attempts to develop an adaptive

stimating method. A discharge voltage versus dept
ischarge (DoD) and discharging current representati
erived to represent the battery discharge characteristic
arametric set is obtained in real time through an adaptiv
ameter identification technique, which enables the es
ion to be adjusted to different batteries and also accom
ates ageing effects. Road tests data obtained from d
n electric scooter on various routes are used to evalua
ffectiveness of the proposed method. In this investiga

he SoC refers to the available capacity (in ampere-ho
emaining in the battery.

. Design of adaptive SoC estimator

A mathematical model is derived to describe the ba
oltage as a function of discharge current and DoD. D
ng battery operation, the model continuously update
oefficients by applying an adaptive parameter identi
ion technique. The SoC is then estimated by employing
ewton–Raphson (NR) method to predict the final DoD
hich the cut-off voltage is reached. The principle of
roposed method is illustrated inFig. 1.

.1. Battery model identification

Traditionally, a non-linear function in the time dom
hat describes the relationship between battery voltage
ecause of the strong dependence of the battery voltage
oD during discharge, Eq.(1) can be shown to be success

n tracking the battery behaviour as will be shown later. In
1), the functionsf1(s) andf2(s) are exponential-type curv
etermined by fitting them to average battery discharge
aviour. When the discharge parameters are measure
oefficientsc1–c4 in θ̂ are identified in real time using th
echnique described briefly as follows.

At themth measured point, Eq.(1) can be expressed as

ˆm = xT
mθ̂m (3)

herexm and θ̂m are themth measurements of the vect
andθ̂, respectively. If themth measured data are used,
arameters in Eq.(1) can be estimated by the least-squa
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method, i.e.,

θ̂m = (xT
mxm)

−1
xT
mνm (4)

When a new measurement, the (m+ 1)th data, is obtained,
it is apparent that to obtain̂θm+1, we must invert an 4× 4
matrix. To preclude the matrix inversion and to improve our
parameter estimates by making use of this new information, a
recursive algorithm[9,10] is applied when experimental data
are being gathered continuously.

With a new measurement, the predicted battery voltage
(xT

m+1θ̂m) using the previous estimation is compared with
the actual value (um+1). The resulting error is expressed as:

em+1 = um+1 − xT
m+1θ̂m. (5)

Then, the new parameter estimation is calculated as:

θ̂m+1 = θ̂m + γm+1Pmxm+1em+1 (6)

with

Pm+1 = 1

λ
[Pm − γm+1Pmxm+1x

T
m+1Pm], (7)

and

γm+1 = 1

1 + xT
m+1Pmxm+1

(8)
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2.2. SoC estimate based on battery model

A block diagram of the steps for performing the SoC esti-
mation is given inFig. 2. The input data include the measured
battery voltage (u), the measured amperes flowing out of the
battery (i), the total ampere-hours charged to the batteries
(AHcharged), the accumulated discharging time (t), and the
cut-off voltageuf specified by the battery supplier. Step P1
computes the average power delivered by the battery over
the time period from the beginning of the discharge to the
present time. Step P2 determines the DoD (denoted bys) at
the present timet. Step P3 calculates the final discharging
current (if ) when the voltage of battery under the present
consuming power (PW) drops to the cut-off voltage (uf ).
Step P4 performs the battery model identification using the
adaptive parameter identification technique described above.
The identified battery model and the calculatedif are fed
to step P5 to estimate how deep the battery will discharge,
i.e., the value ofsf , under the present consuming power. This
is accomplished by using the Newton–Raphson method as
follows.

For a battery with its behaviour described by the mathe-
matical model,̂u(i, s) = f(i, s), and with a discharge rate ofif ,
the value ofsf at which the battery voltage falls to the cut-off
voltage (uf ) can be obtained by finding the unique positive
solution of

g
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here the matrixx is the identified model and̂θ is the co-
fficient matrix ofx to be calculated. By starting with

nitial estimateθ̂(0) and the correspondingP(0), θ̂ can be
equentially updated while new data are being continuo
btained. With this recursive algorithm, the estimates ca
pdated step-by-step without repeatedly computing the

rix solution of Eq.(4). This on-line algorithm allows the e
imateθ̂ to be updated easily as the number of measurem
ncreases. Thus, it is possible to track system paramete
ary slowly.

Fig. 2. Signal
t

(if, s) = f (if, s) − uf = 0 (9)

ccording to the NR method, the rootsf of g(if , s) can be
btained by using the iteration:

k+1 = sk − g(if, sk)

g′(if, sk)
. (10)

n this study, sincesf of the present cycle is used as the ini
uess value for the next cycle, the prediction can alway
ompleted within three iterations. At the final stage ofFig. 2,

SoC estimation.
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the estimated value ofsf and the present value ofsare fed to
step P6 to calculate the SoC (%):

SoC= 100× sf − s

sf
. (11)

The estimate of the SoC is calculated by iteration during the
[t−T, t] period. The SoC estimated by Eq.(11) is referred to
as the ‘residual capacity’. As an example, suppose that a bat-
tery charged with 30 Ah is discharged under dynamic loads.
At the beginning of discharge, the SoC ands are set to be
100% and 0, respectively. As time proceeds, the SoC is de-
creased with increase ins. At the time instancet with certain
amount of consuming power, the battery is discharged to the
depth ofs= 0.2. Supposed that the value ofsf is predicted to be
0.8, then the SoC is obtained as 100× (0.8− 0.2)/0.8 = 75%.
sf = 0.8 means that the present capacity of the battery has
been lowered from 30 to 24 Ah. The usable capacity is then
30× 0.8 = 24 Ah at the present time. Thus, the remaining
available capacity is 24× 0.75 = 18 Ah.

3. Field data test results

Simulation tests were made for confirmation of the effec-
tiveness of the proposed algorithm using the battery voltage
and current data measured from city driving including many
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recorder. All the data records are stored in a personal com-
puter and numbered according to the sequence of the consec-
utive cycles.

Using the field-test data, SoC estimations were carried out
by feeding the data into the proposed algorithm. During the
calculations, the parameter identification and SoC estimation
are conducted in real time as the data are being recorded. This
is to simulate the driving schedule of the scooter. For the first
discharge cycle, the initial values for parameter identification
are selected arbitrarily. Thus, the performance of the resulting
SoC estimate is unsatisfactory. As time proceeds, however,
the accuracy will be improved and stabilized because the
identified results of the previous cycles are used as the initial
values for the following cycle identifications.

The results of the estimates for one of the four series-
connected batteries using the data of the third discharge cy-
cle are shown inFig. 3. The estimated voltage tracks the
measured value successfully, and the estimated SoC shows a
percentage error of less than 7% throughout the discharge. In
this study, the SoC estimations were made for the four batter-
ies individually, since different batteries will exhibit different
characteristics. For example, the capacity of one battery may
be exhausted while the others still retain some capacity. Due
to the average effect of the battery string, this difference may
be smoothed out.

Fig. 3. (a) Comparison between measured battery voltage and estimated
voltage signals. (b) Comparison between actual and estimated SoC.
tarts and stops. The “Emuda” electric scooter by Shang
o. Ltd., Taiwan, was used for tests because of its a
bility. It was powered by a 48 V lead–acid battery set (
2 V battery units connected in series) and was equipped
.58 kW dc brushless motor that drove the rear wheel thr
continuously variable transmission. CSB EVX-12400 d
ischarge Valve-regulated lead–acid batteries were us

he tests and were each rated at 40 Ah. The batteries
airly new at the time of testing. The batteries were f
harged before each discharge cycle by means of a
harger that was built into the electric scooter. The char
chedule was a combination of two constant-power/cons
oltage steps, and the charging time was about 6–8 h.

After the batteries had been charged completely, disch
ycles were begun by driving the electric scooter in var
raffic conditions and were terminated when any one o
our battery units reached the cut-off voltage of 9.6 V. In
he road tests, the driving mode always consisted of a
rating, decelerating and intermediate stopping period
ording to the traffic. Thus, the batteries are not discha
t a constant rate, but at a time-varying rate in the r
f 0–100 A as determined by the slope of the road, dri
peeds, and traffic. Due to the load variations, the fluc
ions in battery current and battery voltage provide an ex
ent opportunity to capture the dynamic characteristics o
atteries. As a result, the persistent excitation requirem
atisfied for the parameter identification process.

During the charge–discharge cycles, parameters su
he battery current, voltage, and the speed of the sc
re measured and recorded every 0.5 s via a hand-hel
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Fig. 4. Simulated constant-power discharge behaviour of CSB lead–acid
battery using model given by Eq. (1).

Table 1
Constant-power discharge characteristics of CSB EVX-12400 battery at
25◦C

Discharge time Discharging power (W)

30 min 457
60 min 275
90 min 201
2 h 170
3 h 117
4 h 93.9

All the values are average values.

The predicted discharge times for various discharge pow-
ers using the battery model given by Eq.(1) are presented in
Fig. 4. The resulting predictions are in good agreement with
the experimental data listed inTable 1(provided by CSB) in
which the discharges were conducted at 25◦C from a fully-
charged state to an end voltage of 9.6 V.

Fig. 5. Error distribution of SoC estimations for 36 data records obtained
f

To validate the effectiveness of the proposed method, SoC
estimations were conducted for 36 data records obtained from
road tests performed under various driving conditions. The
error distribution of the SoC estimations for these data records
is given inFig. 5. The results demonstrate good performance
of the estimations with a maximum error within 10%.

4. Conclusions

A new approach for estimating the SoC of a lead–acid
battery during discharge is discussed. The accuracy is better
than 90%. The approach utilizes a mathematical model that
describes battery voltage as a function of discharge current
and DoD. The coefficients of the model are identified in real
time using measurable data during battery discharge. The
SoC is then estimated through the prediction of the final DoD
by using the battery model.

The algorithm for SoC estimation possesses a learning ca-
pability to accommodate ageing and behavioural changes of
the battery. Simulation tests using battery voltage and cur-
rent signals measured in road tests have been performed. The
effectiveness and accuracy of the proposed method are con-
firmed. The proposed SoC estimator can be easily imple-
mented with low-cost microprocessors.

In this approach, the SoC estimation is designed with em-
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hasis on the discharge cycle only; the charge cycle i
onsidered. Further work will involve combining charge w
ischarge in SoC estimations to form a complete solutio
attery monitoring and management. An attempt will
e made to predict the lifetime of a battery according t
istory of deterioration.
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