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Abstract

The use of electric scooters is being advocated by the government of Taiwan. An accurate indication of the state-of-charge (SoC) of the
battery (lead—acid) is essential to let the driver of the electric scooter know exactly the residual amount what amount of usable capacity. Thi
will result in greater confidence in using the electric scooter, and prevents the driver from becoming stranded with an inoperative machine
The basic idea of this study is to derive a mathematical model that describes the battery voltage as a function of discharge current and dept
of-discharge (DOD). The parameters of this model are identified in real time. Then, the SoC is estimated by means of the Newton—Raphso
(N-R) method. The proposed algorithm enables the estimated SoC to be adjusted for changes in the behaviour of the battery. The effectivene
of the proposed method is verified using field-test data obtained from driving an electric scooter on various routes. The results show that th
adopted method improves the accuracy in estimating the battery of SoC.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction information into a prediction of performance capability. The
specific gravity method, the open-circuit voltage method, and
Justasitisimportant to know the amount of fuel remaining the coulometric measurement method are some examples.
in an automobile, the state-of-charge (SoC) of the battery is Specific gravity is a direct indication of the SoC, because it
essential information in electric scooter operation. If the SoC shows the concentration of acid in the electrolyte (note, acid
can be estimated accurately, the user will know exactly the is consumed during the discharge of a lead—acid battery).
amount of power that the battery is capable of providing. This It is impossible, however, to measure specific gravity con-
naturally results in a greater confidence in the power source,tinuously under driving conditions. Furthermore, the use of
and will allow proper handling of the electric scooter. gelled electrolytes and hermetically sealed batteries preclude
During discharge, the energy capability of a battery de- the application of density measurements for evaluating the
pends on a number of parameters that include discharge curSoC. The open-circuit voltage of a lead—acid battery is a
rent, temperature, battery age, cut-off voltage, and servicefunction of the concentration of acid at the plates. The fully
history (previous charge and dischardg). The SoC of a stabilized open-circuit voltage is an accurate indicator of the
battery is a complex non-linear function of these parameters.SoC with little dependency on the temperature or the past
In practice, direct measurement of some of these parameterdistory of a battery, but to reach a stable open-circuit voltage
is either impossible or financially prohibitive. the battery must be at rest for several hours with no load.
Traditionally, there are several practical methods available Therefore, it is not a realistic option for an electric scooter.
to monitor lead—acid batteries and translate the resulting The coulometric method measures the amount of ampere-
hours taken out of a battery to determine the SoC. Correction
* Corresponding author. Tel.: +886 8 7703202; fax: +886 8 7740398.  actors are required for different discharge rates and ambient
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accurate short-term indication of the SoC, but accumulation Motor
of error over alonger period makes itimpractical to be used by 1 driver [ Accelerator
itself. Motor
Although all of these methods have provided some degree ¥
of success in areas of limited scope, batteries are complex
and dynamic electrochemical systems with performances that ‘"‘e“s"r. —
are dependent on a combination of all of these parameters. T ety
Measurement of a single performance variable provides an 1 i(n ¥
mgomplete picture of the state of the battery, and therefore, Battery Elfgéirly | estsil?mfmr & w00
a limited degree of accuracy. estimator
Recently, a model-based technique has been proposed a r's
an alternative for determining battery SoC. Various models

have been developed based on the characteristic of discharge
Voltage versustime (Or dlscharge Voltage versus SOC) Curve- Fig. 1. Principle of the adaptive battery state-of-charge estimation.
fitting models are used to match the discharge voltage versus

time or discharge voltage versus SoC curve with either a poly- gischarge conditions has been employed to estimate battery
nomial[3], an exponentig¥] or a paraboli¢5] curve. Some  SoC. This representation is not robust, because it is sensitive
models employ more complicated hybrid approadiées]. to changes in the discharge conditions. A more robust model
The major disadvantage of these models is that a parametetan be obtained by representing the discharge in the SoC
set is required for each combination of discharge conditions domain instead of the discharge tirj8}. Because the SoC
and battery type. These parametric sets are obtained througls unknown during battery discharge, these models should be
an exhaustive series of discharge tests. Also, a drastic changgetermined via an exhaustive series of discharge tests. This
in battery behaviour may take place due to ageing, thermalenables the model to be adaptive to different batteries and

stress, or some other operating reasons. For more accuratggeing effects are avoided. The following model represents
SoC estimation, changes in battery behaviour should be takenthe discharge in an equivalent DoD domain:

into account whenever a discharge occurs. These approaches

suffer from this requirement. u(i(r), s) = f(i(r), s) = c1 + ca.f1(s) + ¢3i(r) + C4i(2) f2(s),
The present study attempts to develop an adaptive SoC T

estimating method. A discharge voltage versus depth-of- =x0, @

discharge (DoD) and discharging current representation iswherex:[l f1,(9), 1, i-6(s)]" represents the system’s model
derived to represent the battery discharge characteristics. The, \ 15~ [21' 22’ 83' 214]T is the parametric vector to be esti-

parametric se_t is ot_)tained in_real time_through an adaptiv_e Pa mated. The variable(i, s) in Eq. (1) is the estimated battery

r_ameter |den_t|f|cat|on tgchnlque, Wh'_Ch enables the estima- voltage,i(t) the measured discharging current of the battery,
tion to be ?dJUSted to different batteries anq also accommo- 44sis the DoD which is obtainable through the discharge
dates ageing effects. Road tests data obtained from drlVmgcycle and is calculated by dividing the coulometric measure-

an electric scooter on various routes are used to evaluate th(?n .
. o N ent by the total charge (Al supplied to the batter
effectiveness of the proposed method. In this investigation, during %/he recharge cy%le(i eargea PP y

the SoC refers to the available capacity (in ampere-hours)

remaining in the battery. i
gz Joidr @
AHcharged
2. Design of adaptive SoC estimator Because of the strong dependence of the battery voltage on the

) ) _ ) DoD during discharge, E1) can be shown to be successful
A mathematical model is derived to describe the battery i, tracking the battery behaviour as will be shown later. In Eq.
voltage as a function of discharge current and DoD. Dur- (1) the functiond(s) andfa(s) are exponential-type curves
ing battery operation, the model continuously updates its getermined by fitting them to average battery discharge be-

coefficients by applying an adaptive parameter identifica- payiour. When the discharge parameters are measured, the
tion technique. The SoC is then estimated by employing the ¢oefficientsc;—c4 in § are identified in real time using the
Newton—Raphson (NR) method to predict the final DoD at technique described briefly as follows.

which the cut-off voltage is reached. The principle of the

vl ! At the mth measured point, E¢1) can be expressed as:
proposed method is illustrated fig. L

ftm = X, O 3)
2.1. Battery model identification
wherexy, and ém are themth measurements of the vectors
Traditionally, a non-linear function in the time domain x andé, respectively. If thenth measured data are used, the
that describes the relationship between battery voltage andparameters in Eq1) can be estimated by the least-squares
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method, i.e.,

(4)

When a new measurement, thra« 1)th data, is obtained,
it is apparent that to obtai@)ﬁl, we must invert an 4 4
matrix. To preclude the matrix inversion and to improve our
parameter estimates by making use of this new information, a
recursive algorithnfi9,10]is applied when experimental data
are being gathered continuously.

With a new measurement, the predicted battery voltage
(xL H@m) using the previous estimation is compared with
the actual valueumn+1). The resulting error is expressed as:

®)

Then, the new parameter estimation is calculated as:

- -1
Om = (xLxm) x;vm

T
€m+1 = Um+1 — xm+19m-

ém+1 = ém + Y1 PmXmi1€mi1 (6)
with
1 T
Pyy1= X[Pm - Vm+lexm+lxm+1Pm]’ (7)
and
1
Ym+1 = 8

1+ xl+1mem+1

where the matrix is the identified model and is the co-
efficient matrix ofx to be calculated. By starting with an
initial estimateé(O) and the corresponding(0), 6 can be
sequentially updated while new data are being continuously
obtained. With this recursive algorithm, the estimates can be
updated step-by-step without repeatedly computing the ma-
trix solution of Eq.(4). This on-line algorithm allows the es-
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2.2. SoC estimate based on battery model

A block diagram of the steps for performing the SoC esti-
mation is given irFig. 2 The input data include the measured
battery voltaged), the measured amperes flowing out of the
battery {), the total ampere-hours charged to the batteries
(AHcharged, the accumulated discharging timg, @nd the
cut-off voltageus specified by the battery supplier. Step P1
computes the average power delivered by the battery over
the time period from the beginning of the discharge to the
present time. Step P2 determines the DoD (denotes) by
the present timé. Step P3 calculates the final discharging
current {(f) when the voltage of battery under the present
consuming power (PW) drops to the cut-off voltage).(
Step P4 performs the battery model identification using the
adaptive parameter identification technique described above.
The identified battery model and the calculatedre fed
to step P5 to estimate how deep the battery will discharge,
i.e., the value of;, under the present consuming power. This
is accomplished by using the Newton—Raphson method as
follows.

For a battery with its behaviour described by the mathe-
matical model{i(i, s) =1(i, s), and with a discharge rate if
the value ofs at which the battery voltage falls to the cut-off
voltage () can be obtained by finding the unique positive
solution of

g(it, s) = f(ir, ) —ur =0 )

According to the NR method, the rost of g(it, S) can be
obtained by using the iteration:

(i, sx)
g (s, sx)

Sk+1 = Sk — (10)

timated to be updated easily as the number of measurementsin this study, since of the present cycle is used as the initial
increases. Thus, itis possible to track system parameters thagyess value for the next cycle, the prediction can always be

vary slowly. completed within three iterations. At the final stagéif. 2,
Cut-off
voltage uy # ¢
P1
P3 ; P5
- Iy
b [ iudz ir=PW/uy —— Final DOD (s/
—P pw=0—_ : - inal DOD (8y)
t Estimator using
NR method
P4
i ; Battery Model
.| Identifier
t > Sy
P2 s
Y
> L P6 ! '
- [oidT s s; -5
> = 0  E—— SOC =100x s, —_— SOC(%})
AH charged > A charged .

Fig. 2. Signal flow in

SoC estimation.



C.-Y. Tseng, C.-F. Lin / Journal of Power Sources 147 (2005) 282—-287 285

the estimated value af and the present value sfire fed to recorder. All the data records are stored in a personal com-

step P6 to calculate the SoC (%): puter and numbered according to the sequence of the consec-
St — s utive cycles.
SoC= 100x . (12) Using the field-test data, SoC estimations were carried out

o by feeding the data into the proposed algorithm. During the

The estimate of the SoC is calculated by iteration during the calculations, the parameter identification and SoC estimation
[t—T,1t] period. The SoC estimated by H41)is referred to are conducted in real time as the data are being recorded. This
as the ‘residual capacity’. As an example, suppose that a bat-s to simulate the driving schedule of the scooter. For the first
tery charged with 30 Ah is discharged under dynamic loads. discharge cycle, the initial values for parameter identification
At the beginning of discharge, the SoC asmdre set to be  are selected arbitrarily. Thus, the performance of the resulting
100% and O, respectively. As time proceeds, the SoC is de-SoC estimate is unsatisfactory. As time proceeds, however,
creased with increase ! At the time instancewith certain the accuracy will be improved and stabilized because the
amount of consuming power, the battery is discharged to theidentified results of the previous cycles are used as the initial
depth ofs=0.2. Supposed thatthe valuespis predictedtobe  values for the following cycle identifications.
0.8, then the SoC is obtained as 10(0.8— 0.2)/0.8 = 75%. The results of the estimates for one of the four series-
s =0.8 means that the present capacity of the battery hasconnected batteries using the data of the third discharge cy-
been lowered from 30 to 24 Ah. The usable capacity is then cle are shown irFig. 3. The estimated voltage tracks the
30x 0.8=24 Ah at the present time. Thus, the remaining measured value successfully, and the estimated SoC shows a
available capacity is 24 0.75=18 Ah. percentage error of less than 7% throughout the discharge. In
this study, the SoC estimations were made for the four batter-
ies individually, since different batteries will exhibit different
3. Field data test results characteristics. For example, the capacity of one battery may
be exhausted while the others still retain some capacity. Due
Simulation tests were made for confirmation of the effec- to the average effect of the battery string, this difference may
tiveness of the proposed algorithm using the battery voltage be smoothed out.
and current data measured from city driving including many
starts and stops. The “Emuda” electric scooter by Shang-wei
Co. Ltd., Taiwan, was used for tests because of its avail-
ability. It was powered by a 48V lead—acid battery set (four
12V battery units connected in series) and was equipped with
0.58 kW dc brushless motor that drove the rear wheel through
a continuously variable transmission. CSB EVX-12400 deep-
discharge Valve-regulated lead—acid batteries were used in
the tests and were each rated at 40 Ah. The batteries were
fairly new at the time of testing. The batteries were fully
charged before each discharge cycle by means of a 48V

Voltage(V)

charger that was built into the electric scooter. The charging N on el o i TaE 0%
schedule was a combination of two constant-power/constant- / Discharging Time (hr)
voltage steps, and the charging time was about 6-8 h. 14 " " ‘ :

After the batteries had been charged completely, discharge
cycles were begun by driving the electric scooter in various o | 1
traffic conditions and were terminated when any one of the
four battery units reached the cut-off voltage of 9.6 V. In all

the road tests, the driving mode always consisted of accel- 8 . i : . i ;
erating, decelerating and intermediate stopping periods ac- (z) ©° 0.1 6z 03 04 05 06 07

cording to the traffic. Thus, the batteries are not discharged

at a constant rate, but at a time-varying rate in the range = ; !
of 0-100 A as determined by the slope of the road, driving B gL 1T e Estimated SO0 |

speeds, and traffic. Due to the load variations, the fluctua-
tions in battery current and battery voltage provide an excel- . ‘ ¥
lent opportunity to capture the dynamic characteristics of the 20------- IRt ittty ot \@i&ﬂ --------
batteries. As a result, the persistent excitation requirement is 0 : : ia.
satisfied for the parameter identification process. =

During the charge—discharge cycles, parameters such as

the battery current, voltage, and the spged of the scooterrig. 3. (a) Comparison between measured battery voltage and estimated
are measured and recorded every 0.5 s via a hand-held datsoltage signals. (b) Comparison between actual and estimated SoC.

soc (%)
&

8

3

(b) Discharging Time (hr)
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To validate the effectiveness of the proposed method, SoC
estimations were conducted for 36 data records obtained from
road tests performed under various driving conditions. The
error distribution of the SoC estimations for these datarecords
is given inFig. 5 The results demonstrate good performance
of the estimations with a maximum error within 10%.

4. Conclusions

A new approach for estimating the SoC of a lead—acid
battery during discharge is discussed. The accuracy is better
than 90%. The approach utilizes a mathematical model that
describes battery voltage as a function of discharge current
and DoD. The coefficients of the model are identified in real
time using measurable data during battery discharge. The

Fig. 4. Simulated constant-power discharge behaviour of CSB lead-acid SoC is then estimated through the prediction of the final DoD
battery using model given by Eq. (1).

by using the battery model.
The algorithm for SoC estimation possesses a learning ca-

Constant-power discharge characteristics of CSB EVX-12400 battery at Pability to accommodate ageing and behavioural changes of

Table 1

25°C

Discharge time Discharging power (W)
30min 457

60 min 275

90 min 201

2h 170

3h 117

4h 939

All the values are average values.

the battery. Simulation tests using battery voltage and cur-
rent signals measured in road tests have been performed. The
effectiveness and accuracy of the proposed method are con-
firmed. The proposed SoC estimator can be easily imple-
mented with low-cost microprocessors.

In this approach, the SoC estimation is designed with em-
phasis on the discharge cycle only; the charge cycle is not
considered. Further work will involve combining charge with
discharge in SoC estimations to form a complete solution for
battery monitoring and management. An attempt will also

The predicted discharge times for various discharge pow- he made to predict the lifetime of a battery according to its

ers using the battery model given by Kty) are presented in
Fig. 4. The resulting predictions are in good agreement with
the experimental data listed Table 1(provided by CSB) in
which the discharges were conducted at@%rom a fully-

charged state to an end voltage of 9.6 V.

max error(%)

i i 1 i i

Fig. 5. Error distribution of SoC estimations for 36 data records obtained

10 15 20 25 30
cycle number

from the road tests over various routes.

35

40

history of deterioration.
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